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ABSTRACT 

SLAC has been studying end-to-end WAN bandwidth availability 
and achievability for 2.5 years via IEPM-BW [1]. IEPM-BW 
performs network intensive tests every 90 minutes. Based on that 
experience we have also developed a light weight available 
bandwidth (ABwE [2]) measurement tool that can make a 
measurement within a second. We are now extending this to a 
WAN measurement and detection system (IEPM-LITE) aimed at 
more quickly detecting and troubleshooting network performance 
problems and also to be more friendly on lower performance 
paths. IEPM-LITE uses ping, forward traceroutes, and ABwE 
sensors to monitor, in close to real-time, Round Trip Times 
(RTT), changes in available bandwidth and routes to and from 
target hosts. This paper discusses the experiences, techniques and 
algorithms used to detect and report on significant traceroute and 
bandwidth changes. The ultimate aim is to develop a lightweight 
WAN network performance monitoring system that can detect, in 
near real time, significant changes and generate alerts. 

Categor ies and Subject Descr iptors 
C.4 [Performance of Systems]: Network Performance – 
Measurement techniques, Performance analysis, Trouble shooting 

General Terms 
Algorithms, Measurement, Performance, Reliability. 

Keywords 
 Bandwidth, availability, capacity, problem detection, anomalous 
events, traceroutes, real-time alerts, WAN, network monitoring, 
plateau algorithm.  
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1. INTRODUCTION 
Modern High Energy Nuclear Physics (HENP) requires large 
volumes of data to be effectively distributed between 
collaborators world-wide. In response to this demand, in 
September 2001, SLAC embarked on an Internet end-to-end 
active performance testing and analysis project known as IEPM-
BW [1], to evaluate and monitor the performance of the paths to 
its collaborators.  The IEPM-BW system uses network intensive 
tools such as iperf [3] and bbftp [4] to make achievable 
throughput estimates for TCP and bulk data applications. 
Concurrently, a lightweight, non-intensive bandwidth 
measurement tool (ABwE [2]) has been developed. The intent is 
to use ABwE to perform similar testing and analysis to that 
performed in IEPM-BW while impacting the network less and 
with reduced security requirements.  The reduced network traffic 
is more friendly, enables testing of non-high performance paths 
(e.g. for paths to developing regions), reduces the need for 
scheduling, and/or enables measurements to be made on a more 
frequent basis (e.g. with a frequency of minutes rather than hours) 
so we can present closer to real-time feedback on critical network 
paths. 

The measurement system we are now developing is referred to as 
IEPM-LITE. It performs pings, traceroutes, and frequent light-
weight available bandwidth measurements using ABwE. Ping and 
traceroute information are gathered every 10 minutes. ABwE 
measurements are made at intervals of one to three minutes. The 
measurements are currently made only from SLAC. The intent, as 
for IEPM-BW, is to deploy the toolkit to make IEPM-LITE 
measurements from other major HENP computing centers. The 40 
remote hosts monitored from SLAC are located in US DoE Labs 
(8 hosts) accessed via ESnet, US universities (12) and NASA (1) 
accessed by CENIC-Abilene, Canada (1) accessed by ESnet-
CAnet, a .org host (1), European  Research and Education (R&E) 
facilities (.ch (2), .cz (1), .de (2), .fr (1), .it (2), .nl (1), .uk (3)) 
accessed by ESnet-GEANT-national R&E networks, Japan (3) 
accessed by ESnet-SINET, Pakistan (1) accessed by CENIC-
SingTel-PakTel, and Novosibirsk(1) accessed by ESnet-SINET-
Rostelcom. The bottleneck capacities of the paths from SLAC 
cover a wide range from 512Kbits/s (Novosibirsk) to 1Gbits/s.  

A drawback of this and other monitoring performed by SLAC is 
that there are hundreds of reports and graphs generated daily and 
no one has time to look at them all. Critical performance changes 
often go unnoticed. For example, in August 2003 [5], we did not 
notice until about a month after the event that iperf throughput 



from SLAC to Caltech had dropped dramatically due to incorrect 
route advertisements and consequent poor route selection. Once 
this drop was noticed and investigated, it was fixed in about 4 
hours.  If we had been alerted to this change, it could have been 
reported earlier, and fixed in a more timely fashion. 

As a network end-user one of our goals is to automatically detect 
major decreases in bandwidth to our collaborator sites. Currently 
our main interest is in changes that persist for sufficient time to be 
able to review the change event and if appropriate take action (e.g. 
report it to our upstream provider’s Network Operations Center). 
Further the bandwidth change events that interest us are typically 
step down changes, such as those often caused by route changes, 
rather than incremental changes caused by traffic or host related 
congestion. As shown in [6], very few route changes result in a 
bandwidth change. Further many significant step changes in 
bandwidth are not associated with route changes, and are 
presumably caused by non layer 3 devices such as switches or 
sudden changes in utilization. 

This paper discusses the techniques for bandwidth change event 
detection and traceroute analysis that we are currently developing 
to generate alerts, and when possible, correlate available 
bandwidth changes to route changes.   

2. BANDWIDTH CHANGE DETECTION 
For each measurement ABwE provides three bandwidth estimates 
for a path: the dynamic bandwidth capacity (Cap) by analyzing 
the minimum inter-packet delay; the cross-traffic (Xtr) by 
analyzing the inter-packet delay variability; and the available 
bandwidth (Abw = Cap – Xtr). Of these probably Abw is of most 
interest to a user, however it is more sensitive to cross-traffic over 
which we have little control. Changes in Cap are more likely to be 
caused by route changes or operator errors etc. Cap estimates are 
thus generally preferred for our work. However in some cases the 
minimum packet separation is observed to be relatively fixed at 
the equivalent of a 1 Gbits/s link1 and thus insensitive to events. 
So we have analyzed both Abw and Cap data. The ABwE 
bandwidth estimates are also very rough since each is made by 
analyzing the separation of only 20 packet-pairs.  Estimates can 
thus vary dramatically from minute to minute and have large 
outliers. Therefore, ABwE also provides smoothed data using an 
Exponential Weighted Moving Average (EWMA) [7]. EWMA 
predicts the next value in a time series given the current value zt 
and the current prediction   as 

1ˆ −iz   where  
1ˆ)1(ˆ −⋅+−= ttt zzz εε  

is the smoothing factor, and ABwE sets ε = 0.75.   

The event detection algorithm evolved from work by NLANR [8] 
to develop a “plateau”  algorithm for ping RTTs. It involves 
buffering the time sequence bandwidth data into two buffers: a 
history buffer (h) for base-lining, or (exclusive) when a datum 
meets specific requirements, into a trigger buffer (t). Each buffer 
has a maximum number of entries or duration parameter λλλλ and ττττ 
respectively. ττττ determines how long the bandwidth change must 
exist before an analysis of its data is performed to see if we have 
encountered a significant change or event. Note that if the ABwE 

                                                                 
1 This may be caused for example by the scheduling algorithms of 

network devices such as routers or Network Interface Cards 
(NICs). 

data is taken once a minute, ττττ is roughly the number of minutes 
(assuming no data is lost) that a drop must exist before an event 
may be deemed to have occurred. The history buffer is initialized 
at start up with λλλλ data points. Once h is initialized, we enter the 
data processing loop. The mean (mh) and standard deviation (oh) 
of h are then calculated. 

Two other user set parameters besides the buffer lengths are used 
in the analysis and event detection: 

• The sensitivity (ββββ) is the number of standard deviations (oh) 
beyond mh that a datum must lie to be considered a trigger 
value. The default value for ββββ of 2 appears to work well in 
most cases. 

• Threshold (δδδδ) is the relative difference between the buffer 
means ∆∆∆∆ = (mh - mt,) / mh, that must be exceeded for an 
event to be detected. Once we are in an event detected state, 
this threshold must again be met before another event is 
detected. We are in an event detected state when an event has 
been detected and we have only seen trigger data.   

Setting the buffer lengths typically depends on user requirements.  
For example, how long a change must be sustained (ττττ), before it is 
considered significant, depends on how long the user wants a drop 
in bandwidth to be sustained before she / he is notified. The 
setting of � δδδδ    also depends on the user’s requirements. 

2.1 Pseudo Per l [9] code2  for  modified 
“ plateau”  algor ithm 
External parameters: 
ββββ = sensitivity (default = 2);  
δδδδ = threshold (default 40%) 
λλλλ = history buffer length (default = 1800 minutes3) 
ττττ = trigger buffer length (default = 180 minutes) 
Code variables: 
@y, y = list of & current bandwidth estimates 
mh, oh = history buffer mean & standard deviation 
mt, ot  = trigger buffer mean & standard deviation 
me, oe = event buffer mean & standard deviation 
@h history buffer, current length = scalar(@h) 
@t trigger buffer, current length = scalar(@t) 
  
mt = me = ot  =  oe = 0;  
foreach y (@y) { 
  if (y > (mh - ββββ * oh)) {#then NOT a trigger 
    a=0; 
    if(scalar(@h)>λλλλ){a=shift(@h);}#remove oldest    
    me =  0;  
    if (y > (mh + 2 * ββββ * oh)) {#outlier?4 

                                                                 
2 In perl: a variable name with an @ prefix is an array; the scalar 

function applied to an array gives the length of the array; the 
shift function shifts the oldest value of the array off and returns 
it; push treats the array as a stack and pushes the second 
argument onto the end of the array given in the first argument. 

3 The user specifies λλλλ and ττττ as times, however, the algorithm uses 
the time stamps of the first and last data points to calculate the 
equivalent buffers sizes. 

4 This is to guard against large outliers often seen in the ABwE 
data. 



      if(scalar(@t) >0){a = shift(@t); next;}  
    } 
    if (a < 0 && abs(y - mh) / mh < 0.2) {y = -y}5 
    push(@h, y); #push y into history buffer 
    if (y > 0) { 
      (mh, oh) = calcstats(@h); 
      #calcstats returns mean & stdev for  
      #positive non-zero values in array 
      if (scalar(@t)> 0) {a = shift(@t);} 
    } 
  } 
  else {#trigger data 
    push (@t, y); #add value to trigger buffer 
    if (scalar(@t) < ττττ) {next;}#enough triggers? 
    (mt, ot) = calcstats(@t);#yes, so see if event 
    if ( (mh - mt) / mh > δδδδ) {#event? 
      unless (me == 0) {#already in event state? 
        if((me - mt) / me) >= δδδδ) { 
          me = mt; oe = ot; 
          foreach t (@t) {push (@h,t);} 
          while (scalar(@h) > λλλλ) {a=shift(@h);} 
          (mh, oh) = calcstats(@h); 
          @t=(); #empty trigger buffer 
        } 
        else {a = shift(@t);} 
      } 
      else {#not in event state 
        me = mt; oe = ot; 
        foreach t (@t) {push (@h,t);} 
        while (scalar(@h) > λλλλ) {a=shift(@h);} 
        (mh,   oh) = calcstats(@h); 
        @t = ();#empty trigger buffer 
      } 
    }  
    else {a=shift(@t);} #no event           
  } 
}  
Figure 1 shows the time series of the EWMA smoothed (as a 
continuous line) and raw (before EWMA smoothing) (as points) 
bandwidth estimates of Cap with an event marked by a circle. 
Also marked are the current size of the trigger buffer (ττττ), mh and 
mh - ββββ * oh. The analysis was performed on the raw Cap data 
since the long term effects of smoothing may cause the algorithm 
to miss short changes in bandwidth.  For example for the data in 
Figure 1, δδδδ     is 20% for the EWMA Cap but 48% for the raw Cap, 
so with a δδδδ    � of 40% we would miss the event when analyzing the 
EWMA Cap data 

 

Figure 1. Bandwidth estimates from SLAC to BINP 
Novosibirsk, June 2, 2004 

                                                                 
5 Following the ideas of [8], only data that differs from the mean 

by > 20% is used in the statistics calculations. This is to prevent 
long periods of low bandwidth variation (such as may be 
observed for the smoothed data) from preventing the means and 
standard deviations tracking the most recent trends.   

2.2 Commentary 
If there are breaks in the data, they are ignored, and the analysis 
continues.   

Besides adjusting the algorithm of [8] to detect step downs, we 
added the threshold check when the event buffer fills. We 
replaced the use of variances by standard deviations when 
separating the trigger data from the history data. We also observed 
that the bandwidth can drop gradually over a long period of time. 
Data flushed from the trigger buffer when a full trigger buffer 
does not indicate an event can gradually lower the mean of the 
history buffer. Therefore, data dropped from the trigger buffer, as 
an examination shows that no event is warranted, is discarded (not 
moved to the history buffer).    

2.3 Parameters 
Given reasonable values for the sensitivity and threshold, ττττ has 
the most dramatic effect on the frequency of event detection. It 
determines the amount of time the bandwidth must be depressed 
in order to check for an event.  Figure 2, illustrates the effect of ττττ. 
The open boxes on the top axis indicate that an event occurred at 
that point in time.  

In Figure 2,    ττττ    � = 20, i.e. since the data points for these EWMA 
Abw measurements are ~1 minute apart, the bandwidth must be 
depressed for ~20 minutes before an event is detected. With a δδδδ of 
60% we detect 9 events6. For ττττ    � = 60 no events are detected, and 
for ττττ    � = 40 minutes, 3 events are detected (those on 4/9/04 at 
~13:17 and ~21:20, and on 4/10/04 at ~13:30; the third, fifth and 
eighth squares in the figure). 

λ λ λ λ =1800 mins, ττττ =20 mins, ββββ = 2
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Figure 2. τ τ τ τ = 20 mins – nine events detected in EWMA(Abw) 

from SLAC to Caltech 

ββββ    � controls how far off the mean a data value must be to be entered 
into the trigger buffer. Reasonable values of ββββ    � are in the interval 2 
to 3. Lower values will detect more failures but may result in 
more false positives. As the sensitivity increases, the number of 
events observed often increases, as only values representing the 
more dramatic drops are put in the trigger buffer, and hence the 
threshold of change is reached more often.   

The threshold δδδδ is the normalized change between mh and mt (or 
between me and mt, if me > 0).  The optimum value for δδδδ    � is 
determined by how large a change the user is interested in, and the 

                                                                 
6 These dips were identified to be caused by an application, 

running at regular intervals on the remote host, and not related 
to network conditions. 

 



size of the normal periodic changes for the path.  We typically use 
δδδδ     in the range 30-40%.  

We typically set�  λλλλ to about a day. The analysis time is 
proportional to λλλλ, so one has to be careful with longer values. 

2.4 Validation 
We analyzed time series of ABwE bandwidth from SLAC to all 
40 remote hosts for 100 days from March through June 2004. This 
was done using λλλλ = 1800 minutes,�     ττττ    � = 180 minutes and δδδδ = 0 (i.e. 
we detect all events that fill the trigger buffer). About 25% of the 
hosts manifested one or more events. We carefully looked at the 
events and time series, and categorized the events into three types: 

1. Step down changes in bandwidth (“step”); 

2. Diurnal changes (“diurnal” ); 

3. Changes caused by known events causing congestion 
(e.g. a regularly scheduled cron job, or network 
bandwidth tests) (“host” ). 

To first order, a given host sees one type of event (for our data 
there was one exception, SDSC). Events for a given host typically 
have a small range of values of ∆∆∆∆ (standard deviation(∆∆∆∆) / mean 
(∆∆∆∆) ~ 0.11± 0.1) typically indicating that backup routes are 
consistent or the diurnal behavior is consistent. This manifests 
itself in a multi-modal Distribution Function for ∆∆∆∆. By observing 
the Cumulative Distribution Function (CDF) we identify the 
values of ∆∆∆∆ for various CDF percentiles. Table 1 shows, for each 
host with one or more events, the  event type, the number of 
events below a given threshold δδδδ, the CDF percentile and 
corresponding value of  ∆∆∆∆ together with the  percentage of events 
detected or missed. 

Table 1. Event probabilities 

CDF 5% 10% 25% 50% 75% 90% 95%
Percen
tile

Nb. 
Eve
nts 7% 11% 37% 43% 58% 60% 89% ∆∆∆∆

BINP Novosibirsk Step 2 2 2 2 2 0 0 0

CESnet Prague Step 1 1 1 1 1 0 0 0

DL Liverpool Step 2 2 1 0 0 0 0 0

INFN Milan Step 1 1 0 0 0 0 0 0

Internet2 Atlanta Step 2 2 2 2 2 2 2 2

NIKHEF Amsterdam Step 2 2 2 2 2 2 2 1

ORNL Knoxville Step 2 2 2 2 2 0 0 0

SDSC San Diego Step 2 2 2 0 0 0 0 0

TRIUMF Vancouver Step 1 1 1 1 1 1 1 1

U Mich Ann Arbor Step 1 1 1 1 1 1 1 1

Total Step 16 16 14 11 11 6 6 5

Miss Step 0% 13% 31% 31% 63% 63% 69%

Caltech Pasadena Diurnal 2 2 0 0 0 0 0 0

Indiana Bloomington Diurnal 2 2 2 0 0 0 0 0

SDSC San Diego Diurnal 4 4 4 0 0 0 0 0

U Florida Gainesville Diurnal 10 10 10 10 10 7 0 0

Total Diurnal 18 18 16 10 10 7 0 0

Miss Diurnal 0% 0% 0% 0% 0% 0% 0%

ANL Host 30 30 30 28 0 0 0 0

Total Host 30 30 30 28 0 0 0 0

Miss Host 0% 0% 7% 100% 100% 100% 100%

Host
Event 
Type

 

Table 1 shows that though the modified “plateau”  algorithm 
detects step changes with a range of values of ∆∆∆∆, it is unable to 
reject diurnal changes with a simple change in δδδδ, without 
eliminating many valid events. Reference [8] suggests using a 

long λλλλ of at least 1.5 days for diurnal changes and 3 days if the 
weekend/weekday behavior is different. Such large values of λλλλ 
however, will take a long time to adjust to a change in the base 
bandwidth. Also the time to calculate the statistics increases with 
λλλλ. 

�

� For our data, extending λλλλ to 3 days did not noticeably improve 
the elimination of false positives or reduce the number of missed 
events. 

3. TRACEROUTE ANALYSIS 
We currently utilize the standard Linux traceroute with a 2 second 
timeout, 1 probe per hop, a maximum hop count of 30 hops, and 
start the traceroute after leaving the SLAC border. For each 
destination host we study the performance of traceroute with UDP 
and ICMP probes and choose the most appropriate probe type (i.e. 
the one that resolves the route before the 30 hop maximum and/or 
minimizes the number of non-responding routers). By default we 
use UDP probes. 

The goal of the traceroute analysis is to categorize the traceroute 
information and detect “significant route changes”  between the 
current traceroute and one taken previously. The algorithm for 
categorizing the traceroutes is conceptually as follows. For each 
hop of a traceroute we compare the router IP address against the 
router IP address for the same hop for the previous traceroute 
measurement for a given path. If the router for this hop did “not 
respond” (i.e. the traceroute reported an asterisk (*)) for either this 
or the previous traceroute, then the Hop Change Information 
(HCI) for this hop is noted as “unknown”. If the router responded 
(i.e. provided an IP address) for this hop, for both this and the 
previous traceroute, then the IP addresses reported for this hop are 
compared: 

• If they are identical then the HCI is marked as “no 
change” .  

• If the addresses are not identical then: 

o if they only differ in the last octet then the HCI is 
marked as “minor change same first 3 octets” . 

o if the addresses are in the same Autonomous System 
(AS) then the HCI is marked as “minor change same 
AS” .   

• If neither “minor change same first 3 octets”  nor 
“minor change same AS”  are identified then the HCI is 
marked as a “significant route change” . We also sub-
classify the “significant route change”  into whether or 
not the change involves one (“minor significant route 
change”) or more hops (“major significant route 
change”). 

When all the hops have been compared between the current 
and previous traceroutes, then precedence is given to any 
“significant route change” , followed by “minor change 
same AS” , “minor change same subnet” , “unknown” , and 
“no change”  in that order.  

In addition, unless the HCI is set to “no change”  we also 
note whether the current traceroute did not terminate until 
the “30 hop”  limit was reached and/or whether the 
destination is pingable. Since the destination hosts are 



chosen to be normally pingable, a non-pingable destination 
usually means the destination host or site is not reachable, 
whereas a “30 hop”  pingable destination is probably hidden 
behind a firewall that blocks traceroute probes or responses.  
In all cases except “significant route changes”  we also note 
whether an ICMP checksum error was reported in a current 
traceroute.  

Other cases that are noted include: the traceroute reporting 
“host unknown”  which probably means the host name is 
currently not resolvable; whether the destination has 
multiple addresses. For routes with “no change”  we also 
note whether any exclamation mark (!) annotations [10] 
occur in the traceroute; or whether a router interface 
“stuttered” , i.e. a router interface reported for several TTL 
(Time To Live) settings. Annotations take precedence over 
stutters in the reporting. In some cases annotations and 
stutters are a persistent feature of particular routes, e.g. a 
router near IN2P3 in Lyon France that blocks access to the 
site network for UDP probes. The blocking causes a stutter 
since the router reports an ICMP destination (port) 
unreachable message on the first probe since the TTL has 
expired, and when trying to forward the next probe with a 
larger TTL, finds it is blocked with an ACL, cannot forward 
and reports ICMP destination (prohibited) unreachable 
message. In other cases (e.g. network unreachable) the 
annotations occur occasionally and typically mean the 
required network link is down and there is no alternative. 

3.1 Traceroute Visualization 
. The information is displayed in a table representing the routes 
for a single selected day (Figure 3). The default is today.  The 
table columns represent the hour of the day and each row 
represents a remote destination host. The rows are labeled with 
anonymized host names and URL links are provided to: an 
HTML table of the day’s routes, a text table of the routes, 
route number information (i.e. the route number, the 
associated route and the time last seen), the raw traceroute 
data, plots of the available bandwidth event analysis 
information and the ABwE dynamic bandwidth capacity, 
cross traffic and available bandwidth. The columns are 
labeled with the hour of the day. 

 
Figure 3. Section of a Traceroute Summary Table 

For each non “significant route change”  the cells of the 
table contain a single colored character for each traceroute 

measured in that hour. The single character represents the 
HCI or “30 hop”  route categorization (i.e. period = “no 
change” , asterisk = “not respond” , colon = “minor change 
same first 3 octets” , a = “minor change same AS” , vertical 
bar = “30 hop” , question mark = “host unknown” , quotation 
make = “stutter” ) and the characters are colored orange if 
an ICMP checksum is noted, red if the destination host is 
not pingable, and black otherwise. The use of a single 
character to display the route categories allows a very dense 
table to be displayed that in turn facilitates visually 
scanning for correlated route changes occurring at 
particular times for multiple hosts and/or hosts that are 
experiencing multiple route changes in a day. 

For each “significant route change”  the route number is 
displayed colored red if changes were noted in more than 
one hop and orange otherwise. 

 

Figure 4. Traceroute display selected by check boxes on 
Traceroute Summary Table 

If a bandwidth event was noted for a destination in an hour then 
that cell’s background is colored to indicate the existence of the 
event.  

Each row and each column also contains a check box (see Figure 
4) that can be selected to submit requests for either a topology 
map for the selected hosts and times, or the routes together with 
their router AS information.  

The web page also includes documentation and historical data. 

4. BANDWIDTH AND ROUTE 
VISUALIZATION 
To assist in developing and debugging the algorithm, and to 
provide a visual understanding to users, we display overlapping 
time series of Cap, the EWMA of Abw and Xtr, mh and (mh - ββββ * 
oh), RTT, forward and reverse significant route changes 
(identified by a vertical bar) and events (identified by a large 
asterisk). Mouseover an event asterisk shows the time, ∆∆∆∆, (mh - 
mt) / (sqrt(oh

2
 + ot

2)/2), mh, oh, mt, and ot. Clicking on the 
asterisk zooms the display in around the event.   

Figure 5 shows the time series of the smoothed Abw, Xtr and Cap 
(as continuous lines), plus the raw Cap (as dots) and two 
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significant route changes correlating with a bandwidth change 
event (marked with a circle). 

Bandwidth from SLAC to Supernet.org June 2, 2004
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Figure 5: Bandwidth from SLAC to supernet.org June 2, 2004 

 
Figure 6: Par t of the traceroute table for  June 2, 2004. 

Figure 6 shows part of the traceroute table associated with the 
bandwidth change event of Figure 5 for supernet.org for June 2, 
2004. The route numbers at the significant route changes are 
given in red (black rectangles in black and white), and the box at 
14:00 hours is colored yellow (shaded in black and white) to 
indicate that an event was detected. It can also be seen that other 
routes also experienced route changes at similar times. 

5. FUTURE WORK 
The major cause of false positives currently is due to diurnal 
changes, especially following a weekend when there is little 
congestion and hence stable bandwidth. We are currently working 
on incorporating Holt-Winters forecasting [7] to try and account 
for diurnal and other periodic effects. Areas for future exploration 
include further study and development of the bandwidth change 
algorithm (including using multivariate techniques [11] for 
example to look at Cap and Abw simultaneously, to add in RTT 
estimates and to look at multiple paths), and providing a better 
understanding of how to set the algorithm’s parameters to meet 
required needs. As part of this we are gathering a “ library”  of 
interesting events both with true and false positives to benchmark 
the algorithms against. We also intend to apply the bandwidth 
change algorithm to other data including RTT estimates, and 
extend the tools to analyze AMP [12] data. Our intention is to use 
the events to initiate the gathering of further critical relevant data, 
and include that in the email alerts. We will also explore ways of 
filtering the alerts to reduce the number of emails.  

 

 

 

 

Other work includes implementing the bandwidth change 
detection algorithm in a symmetric fashion to detect rises in 
throughput and thus quantify the time span of varying throughput 
levels. 
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