
Experiences in Traceroute and Available Bandwidth
Change Analysis*

Connie Logg
SLAC

2575 Sand Hill Road
Menlo Park, CA 94025

+1 (650)926-2523

cal@slac.stanford.edu

Les Cottrell
SLAC

2575 Sand Hill Road
Menlo Park, CA 94025

+1 (650)926-2879

cottrell@slac.stanford.edu

Jiri Navratil
SLAC

2575 Sand Hill Road
Menlo Park CA 94025

+1 (650)926-3332

jiri@slac.stanford.edu

ABSTRACT

SLAC has been studying end-to-end WAN bandwidth availability
and achievability for 2.5 years via IEPM-BW [1]. IEPM-BW
performs network intensive tests every 90 minutes. Based on that
experience we have also developed a light weight available
bandwidth (ABwE [2]) measurement tool that can make a
measurement within a second. We are now extending this to a
WAN measurement and detection system (IEPM-LITE) aimed at
more quickly detecting and troubleshooting network performance
problems and also to be more friendly on lower performance
paths. IEPM-LITE uses ping, forward traceroutes, and ABwE
sensors to monitor, in close to real-time, Round Trip Times
(RTT), changes in available bandwidth and routes to and from
target hosts. This paper discusses the experiences, techniques and
algorithms used to detect and report on significant traceroute and
bandwidth changes. The ultimate aim is to develop a lightweight
WAN network performance monitoring system that can detect, in
near real time, significant changes and generate alerts.

Categor ies and Subject Descr iptors
C.4 [Performance of Systems]: Network Performance –
Measurement techniques, Performance analysis, Trouble shooting

General Terms
Algorithms, Measurement, Performance, Reliability.

Keywords
 Bandwidth, availability, capacity, problem detection, anomalous
events, traceroutes, real-time alerts, WAN, network monitoring,
plateau algorithm.

* This work is supported by U.S. DOE Contract No. DE-AC03-
76SF00515.

Copyright 2004 Association for Computing Machinery.

ACM acknowledges that this contribution was authored by a contractor or
affiliate of the U.S. Government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.

SIGCOMM'04 Workshops, Aug. 30 & Sept. 3, 2004, Portland, OR, USA.

1. INTRODUCTION
Modern High Energy Nuclear Physics (HENP) requires large
volumes of data to be effectively distributed between
collaborators world-wide. In response to this demand, in
September 2001, SLAC embarked on an Internet end-to-end
active performance testing and analysis project known as IEPM-
BW [1], to evaluate and monitor the performance of the paths to
its collaborators. The IEPM-BW system uses network intensive
tools such as iperf [3] and bbftp [4] to make achievable
throughput estimates for TCP and bulk data applications.
Concurrently, a lightweight, non-intensive bandwidth
measurement tool (ABwE [2]) has been developed. The intent is
to use ABwE to perform similar testing and analysis to that
performed in IEPM-BW while impacting the network less and
with reduced security requirements. The reduced network traffic
is more friendly, enables testing of non-high performance paths
(e.g. for paths to developing regions), reduces the need for
scheduling, and/or enables measurements to be made on a more
frequent basis (e.g. with a frequency of minutes rather than hours)
so we can present closer to real-time feedback on critical network
paths.

The measurement system we are now developing is referred to as
IEPM-LITE. It performs pings, traceroutes, and frequent light-
weight available bandwidth measurements using ABwE. Ping and
traceroute information are gathered every 10 minutes. ABwE
measurements are made at intervals of one to three minutes. The
measurements are currently made only from SLAC. The intent, as
for IEPM-BW, is to deploy the toolkit to make IEPM-LITE
measurements from other major HENP computing centers. The 40
remote hosts monitored from SLAC are located in US DoE Labs
(8 hosts) accessed via ESnet, US universities (12) and NASA (1)
accessed by CENIC-Abilene, Canada (1) accessed by ESnet-
CAnet, a .org host (1), European Research and Education (R&E)
facilities (.ch (2), .cz (1), .de (2), .fr (1), .it (2), .nl (1), .uk (3))
accessed by ESnet-GEANT-national R&E networks, Japan (3)
accessed by ESnet-SINET, Pakistan (1) accessed by CENIC-
SingTel-PakTel, and Novosibirsk(1) accessed by ESnet-SINET-
Rostelcom. The bottleneck capacities of the paths from SLAC
cover a wide range from 512Kbits/s (Novosibirsk) to 1Gbits/s.

A drawback of this and other monitoring performed by SLAC is
that there are hundreds of reports and graphs generated daily and
no one has time to look at them all. Critical performance changes
often go unnoticed. For example, in August 2003 [5], we did not
notice until about a month after the event that iperf throughput

from SLAC to Caltech had dropped dramatically due to incorrect
route advertisements and consequent poor route selection. Once
this drop was noticed and investigated, it was fixed in about 4
hours. If we had been alerted to this change, it could have been
reported earlier, and fixed in a more timely fashion.

As a network end-user one of our goals is to automatically detect
major decreases in bandwidth to our collaborator sites. Currently
our main interest is in changes that persist for sufficient time to be
able to review the change event and if appropriate take action (e.g.
report it to our upstream provider’s Network Operations Center).
Further the bandwidth change events that interest us are typically
step down changes, such as those often caused by route changes,
rather than incremental changes caused by traffic or host related
congestion. As shown in [6], very few route changes result in a
bandwidth change. Further many significant step changes in
bandwidth are not associated with route changes, and are
presumably caused by non layer 3 devices such as switches or
sudden changes in utilization.

This paper discusses the techniques for bandwidth change event
detection and traceroute analysis that we are currently developing
to generate alerts, and when possible, correlate available
bandwidth changes to route changes.

2. BANDWIDTH CHANGE DETECTION
For each measurement ABwE provides three bandwidth estimates
for a path: the dynamic bandwidth capacity (Cap) by analyzing
the minimum inter-packet delay; the cross-traffic (Xtr) by
analyzing the inter-packet delay variability; and the available
bandwidth (Abw = Cap – Xtr). Of these probably Abw is of most
interest to a user, however it is more sensitive to cross-traffic over
which we have little control. Changes in Cap are more likely to be
caused by route changes or operator errors etc. Cap estimates are
thus generally preferred for our work. However in some cases the
minimum packet separation is observed to be relatively fixed at
the equivalent of a 1 Gbits/s link1 and thus insensitive to events.
So we have analyzed both Abw and Cap data. The ABwE
bandwidth estimates are also very rough since each is made by
analyzing the separation of only 20 packet-pairs. Estimates can
thus vary dramatically from minute to minute and have large
outliers. Therefore, ABwE also provides smoothed data using an
Exponential Weighted Moving Average (EWMA) [7]. EWMA
predicts the next value in a time series given the current value zt
and the current prediction as

1ˆ −iz where
1ˆ)1(ˆ −⋅+−= ttt zzz εε

is the smoothing factor, and ABwE sets ε = 0.75.

The event detection algorithm evolved from work by NLANR [8]
to develop a “plateau” algorithm for ping RTTs. It involves
buffering the time sequence bandwidth data into two buffers: a
history buffer (h) for base-lining, or (exclusive) when a datum
meets specific requirements, into a trigger buffer (t). Each buffer
has a maximum number of entries or duration parameter λλλλ and ττττ
respectively. ττττ determines how long the bandwidth change must
exist before an analysis of its data is performed to see if we have
encountered a significant change or event. Note that if the ABwE

1 This may be caused for example by the scheduling algorithms of

network devices such as routers or Network Interface Cards
(NICs).

data is taken once a minute, ττττ is roughly the number of minutes
(assuming no data is lost) that a drop must exist before an event
may be deemed to have occurred. The history buffer is initialized
at start up with λλλλ data points. Once h is initialized, we enter the
data processing loop. The mean (mh) and standard deviation (oh)
of h are then calculated.

Two other user set parameters besides the buffer lengths are used
in the analysis and event detection:

• The sensitivity (ββββ) is the number of standard deviations (oh)
beyond mh that a datum must lie to be considered a trigger
value. The default value for ββββ of 2 appears to work well in
most cases.

• Threshold (δδδδ) is the relative difference between the buffer
means ∆∆∆∆ = (mh - mt,) / mh, that must be exceeded for an
event to be detected. Once we are in an event detected state,
this threshold must again be met before another event is
detected. We are in an event detected state when an event has
been detected and we have only seen trigger data.

Setting the buffer lengths typically depends on user requirements.
For example, how long a change must be sustained (ττττ), before it is
considered significant, depends on how long the user wants a drop
in bandwidth to be sustained before she / he is notified. The
setting of � δδδδ also depends on the user’s requirements.

2.1 Pseudo Per l [9] code2 for modified
“ plateau” algor ithm
External parameters:
ββββ = sensitivity (default = 2);
δδδδ = threshold (default 40%)
λλλλ = history buffer length (default = 1800 minutes3)
ττττ = trigger buffer length (default = 180 minutes)
Code variables:
@y, y = list of & current bandwidth estimates
mh, oh = history buffer mean & standard deviation
mt, ot = trigger buffer mean & standard deviation
me, oe = event buffer mean & standard deviation
@h history buffer, current length = scalar(@h)
@t trigger buffer, current length = scalar(@t)

mt = me = ot = oe = 0;
foreach y (@y) {
 if (y > (mh - ββββ * oh)) {#then NOT a trigger
 a=0;
 if(scalar(@h)>λλλλ){a=shift(@h);}#remove oldest
 me = 0;
 if (y > (mh + 2 * ββββ * oh)) {#outlier?4

2 In perl: a variable name with an @ prefix is an array; the scalar

function applied to an array gives the length of the array; the
shift function shifts the oldest value of the array off and returns
it; push treats the array as a stack and pushes the second
argument onto the end of the array given in the first argument.

3 The user specifies λλλλ and ττττ as times, however, the algorithm uses
the time stamps of the first and last data points to calculate the
equivalent buffers sizes.

4 This is to guard against large outliers often seen in the ABwE
data.

 if(scalar(@t) >0){a = shift(@t); next;}
 }
 if (a < 0 && abs(y - mh) / mh < 0.2) {y = -y}5
 push(@h, y); #push y into history buffer
 if (y > 0) {
 (mh, oh) = calcstats(@h);
 #calcstats returns mean & stdev for
 #positive non-zero values in array
 if (scalar(@t)> 0) {a = shift(@t);}
 }
 }
 else {#trigger data
 push (@t, y); #add value to trigger buffer
 if (scalar(@t) < ττττ) {next;}#enough triggers?
 (mt, ot) = calcstats(@t);#yes, so see if event
 if ((mh - mt) / mh > δδδδ) {#event?
 unless (me == 0) {#already in event state?
 if((me - mt) / me) >= δδδδ) {
 me = mt; oe = ot;
 foreach t (@t) {push (@h,t);}
 while (scalar(@h) > λλλλ) {a=shift(@h);}
 (mh, oh) = calcstats(@h);
 @t=(); #empty trigger buffer
 }
 else {a = shift(@t);}
 }
 else {#not in event state
 me = mt; oe = ot;
 foreach t (@t) {push (@h,t);}
 while (scalar(@h) > λλλλ) {a=shift(@h);}
 (mh, oh) = calcstats(@h);
 @t = ();#empty trigger buffer
 }
 }
 else {a=shift(@t);} #no event
 }
}
Figure 1 shows the time series of the EWMA smoothed (as a
continuous line) and raw (before EWMA smoothing) (as points)
bandwidth estimates of Cap with an event marked by a circle.
Also marked are the current size of the trigger buffer (ττττ), mh and
mh - ββββ * oh. The analysis was performed on the raw Cap data
since the long term effects of smoothing may cause the algorithm
to miss short changes in bandwidth. For example for the data in
Figure 1, δδδδ is 20% for the EWMA Cap but 48% for the raw Cap,
so with a δδδδ � of 40% we would miss the event when analyzing the
EWMA Cap data

Figure 1. Bandwidth estimates from SLAC to BINP
Novosibirsk, June 2, 2004

5 Following the ideas of [8], only data that differs from the mean

by > 20% is used in the statistics calculations. This is to prevent
long periods of low bandwidth variation (such as may be
observed for the smoothed data) from preventing the means and
standard deviations tracking the most recent trends.

2.2 Commentary
If there are breaks in the data, they are ignored, and the analysis
continues.

Besides adjusting the algorithm of [8] to detect step downs, we
added the threshold check when the event buffer fills. We
replaced the use of variances by standard deviations when
separating the trigger data from the history data. We also observed
that the bandwidth can drop gradually over a long period of time.
Data flushed from the trigger buffer when a full trigger buffer
does not indicate an event can gradually lower the mean of the
history buffer. Therefore, data dropped from the trigger buffer, as
an examination shows that no event is warranted, is discarded (not
moved to the history buffer).

2.3 Parameters
Given reasonable values for the sensitivity and threshold, ττττ has
the most dramatic effect on the frequency of event detection. It
determines the amount of time the bandwidth must be depressed
in order to check for an event. Figure 2, illustrates the effect of ττττ.
The open boxes on the top axis indicate that an event occurred at
that point in time.

In Figure 2, ττττ � = 20, i.e. since the data points for these EWMA
Abw measurements are ~1 minute apart, the bandwidth must be
depressed for ~20 minutes before an event is detected. With a δδδδ of
60% we detect 9 events6. For ττττ � = 60 no events are detected, and
for ττττ � = 40 minutes, 3 events are detected (those on 4/9/04 at
~13:17 and ~21:20, and on 4/10/04 at ~13:30; the third, fifth and
eighth squares in the figure).

λ λ λ λ =1800 mins, ττττ =20 mins, ββββ = 2

0
100
200
300
400
500
600
700
800
900

1000

4/9/04 0:00 4/9/04
12:00

4/10/04
0:00

4/10/04
12:00

4/11/04
0:00

4/11/04
12:00

4/12/04
0:00

B
an

dw
id

th
 M

bi
ts

/s

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

EWMA(Abw) EWMA(Xtr) EWMA(Cap) event

EWMA(Abw)

EWMA(Xtr)

EWMA(Cap)

Figure 2. τ τ τ τ = 20 mins – nine events detected in EWMA(Abw)

from SLAC to Caltech

ββββ � controls how far off the mean a data value must be to be entered
into the trigger buffer. Reasonable values of ββββ � are in the interval 2
to 3. Lower values will detect more failures but may result in
more false positives. As the sensitivity increases, the number of
events observed often increases, as only values representing the
more dramatic drops are put in the trigger buffer, and hence the
threshold of change is reached more often.

The threshold δδδδ is the normalized change between mh and mt (or
between me and mt, if me > 0). The optimum value for δδδδ � is
determined by how large a change the user is interested in, and the

6 These dips were identified to be caused by an application,

running at regular intervals on the remote host, and not related
to network conditions.

size of the normal periodic changes for the path. We typically use
δδδδ in the range 30-40%.

We typically set� λλλλ to about a day. The analysis time is
proportional to λλλλ, so one has to be careful with longer values.

2.4 Validation
We analyzed time series of ABwE bandwidth from SLAC to all
40 remote hosts for 100 days from March through June 2004. This
was done using λλλλ = 1800 minutes,� ττττ � = 180 minutes and δδδδ = 0 (i.e.
we detect all events that fill the trigger buffer). About 25% of the
hosts manifested one or more events. We carefully looked at the
events and time series, and categorized the events into three types:

1. Step down changes in bandwidth (“step”);

2. Diurnal changes (“diurnal”);

3. Changes caused by known events causing congestion
(e.g. a regularly scheduled cron job, or network
bandwidth tests) (“host”).

To first order, a given host sees one type of event (for our data
there was one exception, SDSC). Events for a given host typically
have a small range of values of ∆∆∆∆ (standard deviation(∆∆∆∆) / mean
(∆∆∆∆) ~ 0.11± 0.1) typically indicating that backup routes are
consistent or the diurnal behavior is consistent. This manifests
itself in a multi-modal Distribution Function for ∆∆∆∆. By observing
the Cumulative Distribution Function (CDF) we identify the
values of ∆∆∆∆ for various CDF percentiles. Table 1 shows, for each
host with one or more events, the event type, the number of
events below a given threshold δδδδ, the CDF percentile and
corresponding value of ∆∆∆∆ together with the percentage of events
detected or missed.

Table 1. Event probabilities

CDF 5% 10% 25% 50% 75% 90% 95%
Percen
tile

Nb.
Eve
nts 7% 11% 37% 43% 58% 60% 89% ∆∆∆∆

BINP Novosibirsk Step 2 2 2 2 2 0 0 0

CESnet Prague Step 1 1 1 1 1 0 0 0

DL Liverpool Step 2 2 1 0 0 0 0 0

INFN Milan Step 1 1 0 0 0 0 0 0

Internet2 Atlanta Step 2 2 2 2 2 2 2 2

NIKHEF Amsterdam Step 2 2 2 2 2 2 2 1

ORNL Knoxville Step 2 2 2 2 2 0 0 0

SDSC San Diego Step 2 2 2 0 0 0 0 0

TRIUMF Vancouver Step 1 1 1 1 1 1 1 1

U Mich Ann Arbor Step 1 1 1 1 1 1 1 1

Total Step 16 16 14 11 11 6 6 5

Miss Step 0% 13% 31% 31% 63% 63% 69%

Caltech Pasadena Diurnal 2 2 0 0 0 0 0 0

Indiana Bloomington Diurnal 2 2 2 0 0 0 0 0

SDSC San Diego Diurnal 4 4 4 0 0 0 0 0

U Florida Gainesville Diurnal 10 10 10 10 10 7 0 0

Total Diurnal 18 18 16 10 10 7 0 0

Miss Diurnal 0% 0% 0% 0% 0% 0% 0%

ANL Host 30 30 30 28 0 0 0 0

Total Host 30 30 30 28 0 0 0 0

Miss Host 0% 0% 7% 100% 100% 100% 100%

Host
Event
Type

Table 1 shows that though the modified “plateau” algorithm
detects step changes with a range of values of ∆∆∆∆, it is unable to
reject diurnal changes with a simple change in δδδδ, without
eliminating many valid events. Reference [8] suggests using a

long λλλλ of at least 1.5 days for diurnal changes and 3 days if the
weekend/weekday behavior is different. Such large values of λλλλ
however, will take a long time to adjust to a change in the base
bandwidth. Also the time to calculate the statistics increases with
λλλλ.

�

� For our data, extending λλλλ to 3 days did not noticeably improve
the elimination of false positives or reduce the number of missed
events.

3. TRACEROUTE ANALYSIS
We currently utilize the standard Linux traceroute with a 2 second
timeout, 1 probe per hop, a maximum hop count of 30 hops, and
start the traceroute after leaving the SLAC border. For each
destination host we study the performance of traceroute with UDP
and ICMP probes and choose the most appropriate probe type (i.e.
the one that resolves the route before the 30 hop maximum and/or
minimizes the number of non-responding routers). By default we
use UDP probes.

The goal of the traceroute analysis is to categorize the traceroute
information and detect “significant route changes” between the
current traceroute and one taken previously. The algorithm for
categorizing the traceroutes is conceptually as follows. For each
hop of a traceroute we compare the router IP address against the
router IP address for the same hop for the previous traceroute
measurement for a given path. If the router for this hop did “not
respond” (i.e. the traceroute reported an asterisk (*)) for either this
or the previous traceroute, then the Hop Change Information
(HCI) for this hop is noted as “unknown”. If the router responded
(i.e. provided an IP address) for this hop, for both this and the
previous traceroute, then the IP addresses reported for this hop are
compared:

• If they are identical then the HCI is marked as “no
change” .

• If the addresses are not identical then:

o if they only differ in the last octet then the HCI is
marked as “minor change same first 3 octets” .

o if the addresses are in the same Autonomous System
(AS) then the HCI is marked as “minor change same
AS” .

• If neither “minor change same first 3 octets” nor
“minor change same AS” are identified then the HCI is
marked as a “significant route change” . We also sub-
classify the “significant route change” into whether or
not the change involves one (“minor significant route
change”) or more hops (“major significant route
change”).

When all the hops have been compared between the current
and previous traceroutes, then precedence is given to any
“significant route change” , followed by “minor change
same AS” , “minor change same subnet” , “unknown” , and
“no change” in that order.

In addition, unless the HCI is set to “no change” we also
note whether the current traceroute did not terminate until
the “30 hop” limit was reached and/or whether the
destination is pingable. Since the destination hosts are

chosen to be normally pingable, a non-pingable destination
usually means the destination host or site is not reachable,
whereas a “30 hop” pingable destination is probably hidden
behind a firewall that blocks traceroute probes or responses.
In all cases except “significant route changes” we also note
whether an ICMP checksum error was reported in a current
traceroute.

Other cases that are noted include: the traceroute reporting
“host unknown” which probably means the host name is
currently not resolvable; whether the destination has
multiple addresses. For routes with “no change” we also
note whether any exclamation mark (!) annotations [10]
occur in the traceroute; or whether a router interface
“stuttered” , i.e. a router interface reported for several TTL
(Time To Live) settings. Annotations take precedence over
stutters in the reporting. In some cases annotations and
stutters are a persistent feature of particular routes, e.g. a
router near IN2P3 in Lyon France that blocks access to the
site network for UDP probes. The blocking causes a stutter
since the router reports an ICMP destination (port)
unreachable message on the first probe since the TTL has
expired, and when trying to forward the next probe with a
larger TTL, finds it is blocked with an ACL, cannot forward
and reports ICMP destination (prohibited) unreachable
message. In other cases (e.g. network unreachable) the
annotations occur occasionally and typically mean the
required network link is down and there is no alternative.

3.1 Traceroute Visualization
. The information is displayed in a table representing the routes
for a single selected day (Figure 3). The default is today. The
table columns represent the hour of the day and each row
represents a remote destination host. The rows are labeled with
anonymized host names and URL links are provided to: an
HTML table of the day’s routes, a text table of the routes,
route number information (i.e. the route number, the
associated route and the time last seen), the raw traceroute
data, plots of the available bandwidth event analysis
information and the ABwE dynamic bandwidth capacity,
cross traffic and available bandwidth. The columns are
labeled with the hour of the day.

Figure 3. Section of a Traceroute Summary Table

For each non “significant route change” the cells of the
table contain a single colored character for each traceroute

measured in that hour. The single character represents the
HCI or “30 hop” route categorization (i.e. period = “no
change” , asterisk = “not respond” , colon = “minor change
same first 3 octets” , a = “minor change same AS” , vertical
bar = “30 hop” , question mark = “host unknown” , quotation
make = “stutter”) and the characters are colored orange if
an ICMP checksum is noted, red if the destination host is
not pingable, and black otherwise. The use of a single
character to display the route categories allows a very dense
table to be displayed that in turn facilitates visually
scanning for correlated route changes occurring at
particular times for multiple hosts and/or hosts that are
experiencing multiple route changes in a day.

For each “significant route change” the route number is
displayed colored red if changes were noted in more than
one hop and orange otherwise.

Figure 4. Traceroute display selected by check boxes on
Traceroute Summary Table

If a bandwidth event was noted for a destination in an hour then
that cell’s background is colored to indicate the existence of the
event.

Each row and each column also contains a check box (see Figure
4) that can be selected to submit requests for either a topology
map for the selected hosts and times, or the routes together with
their router AS information.

The web page also includes documentation and historical data.

4. BANDWIDTH AND ROUTE
VISUALIZATION
To assist in developing and debugging the algorithm, and to
provide a visual understanding to users, we display overlapping
time series of Cap, the EWMA of Abw and Xtr, mh and (mh - ββββ *
oh), RTT, forward and reverse significant route changes
(identified by a vertical bar) and events (identified by a large
asterisk). Mouseover an event asterisk shows the time, ∆∆∆∆, (mh -
mt) / (sqrt(oh

2
 + ot

2)/2), mh, oh, mt, and ot. Clicking on the
asterisk zooms the display in around the event.

Figure 5 shows the time series of the smoothed Abw, Xtr and Cap
(as continuous lines), plus the raw Cap (as dots) and two

DL CLRC

IN2P3

CESnet

ESnet

JAnet

GEANT

Nodes colored by ISP

Mouseover shows node names

Click on node to see subroutes

Click on end node to see its path back

Also can get raw traceroutes with AS’

Alternate rt

SLAC

Alternate route

History navigation

Multiple route changes

 (due to GEANT),
later restored to
original route

Available bandwidth

Raw traceroute logs for debugging

Textual summary of traceroutes for email to ISP
Description of route numbers with date last seen

User readable (web table) routes for this host for this day

Route # at start of day,
gives idea of root stability

Mouseover for hops & RTT

Choose nodes and times and “ submit”

significant route changes correlating with a bandwidth change
event (marked with a circle).

Bandwidth from SLAC to Supernet.org June 2, 2004

0

200

400

600

800

1000

6/
2/

04
0:

00

6/
3/

04
0:

00

B
an

d
w

id
th

 in
 M

b
its

/s

Xtr

Abw

Cap

mh - 2 oh

mh

Route changes

mh=954Mbits/s, mt=753Mbits/s

(mh-mt)/(sqrt((oh**2+ot**2)/2))=2.4

β sensitivity = 2;
δ � threshold 40%
λ history buffer length = 600
τ trigger buffer length = 60

Figure 5: Bandwidth from SLAC to supernet.org June 2, 2004

Figure 6: Par t of the traceroute table for June 2, 2004.

Figure 6 shows part of the traceroute table associated with the
bandwidth change event of Figure 5 for supernet.org for June 2,
2004. The route numbers at the significant route changes are
given in red (black rectangles in black and white), and the box at
14:00 hours is colored yellow (shaded in black and white) to
indicate that an event was detected. It can also be seen that other
routes also experienced route changes at similar times.

5. FUTURE WORK
The major cause of false positives currently is due to diurnal
changes, especially following a weekend when there is little
congestion and hence stable bandwidth. We are currently working
on incorporating Holt-Winters forecasting [7] to try and account
for diurnal and other periodic effects. Areas for future exploration
include further study and development of the bandwidth change
algorithm (including using multivariate techniques [11] for
example to look at Cap and Abw simultaneously, to add in RTT
estimates and to look at multiple paths), and providing a better
understanding of how to set the algorithm’s parameters to meet
required needs. As part of this we are gathering a “ library” of
interesting events both with true and false positives to benchmark
the algorithms against. We also intend to apply the bandwidth
change algorithm to other data including RTT estimates, and
extend the tools to analyze AMP [12] data. Our intention is to use
the events to initiate the gathering of further critical relevant data,
and include that in the email alerts. We will also explore ways of
filtering the alerts to reduce the number of emails.

Other work includes implementing the bandwidth change
detection algorithm in a symmetric fashion to detect rises in
throughput and thus quantify the time span of varying throughput
levels.

6. ACKNOWLEDGMENTS
We gratefully acknowledge Jerrod Williams for work on the
traceroute visualization and Ruchi Gupta for work on the plotting
code.

7. REFERENCES
[1] Experiences and Results from a New High Performance

Network and Application Monitoring Toolkit, R. L. Cottrell,
C. Logg and I-Heng Mei, SLAC-PUB-9641, presented at
PAM 2003.

[2] ABwE: A practical Approach to Available Bandwidth
Estimation, J. Navratil and R. L. Cottrell, SLAC-PUB-9622,
presented at PAM 2003.

[3] Iperf – the TCP/UDP Bandwidth Measurement Tool,
NLANR. Available http://dast.nlanr.net/Projects/Iperf/

[4] Bbftp – Large files transfer protocol, IN2P3. Available
http://doc.in2p3.fr/bbftp/

[5] Case study of August 2003 bandwidth drop between SLAC
and CALTECH. Available
http://www.slac.stanford.edu/grp/scs/net/case/caltech

[6] Correlating Internet Performance Changes and Route
Changes to Assist in Trouble-shooting from an End-user
Perspective, C. Logg, J. Navratil, R. L. Cottrell, SLAC-PUB-
10341, PAM 2004

[7] Introduction to Time Series and Forecasting, P. Brockwell
and R. Davis, Springer New York, 1996.

[8] Automated Event Detection for Active Measurement Systems,
A. J. McGregor and H-W. Braun, Passive and Active
Measurements 2001.
http://byerley.cs.waikato.ac.nz/~tonym/papers/event.pdf

[9] Programming Perl, L. Wall, T. Christiansen, J. Orwant,
O’Reilly & Associates Inc., 2002

[10] Unix man pages for traceroute, available for example at
http://www.zytek.com/traceroute.man.htm

[11] Diagnosing Network-Wide Traffic Anomalies, A. Lakhina,
M. Crovella, C.Diot, SIGCOMM 2004.

[12] The NLANR NAI Network Analysis Infrastructure, A.
McGregor , H-W. Braun, J Brown. IEEE Communication
Magazine special issue on network measurement, pp 122-
128, May 2000.

